PHYSICAL / INORGANIC CHEMISTRY

DPP No. 43

Total Marks: 42

Max. Time: 45 min.

Topic: Solid State

Type of Questions					M.M., Min.		
				3 marks, 3 min.)	[21, 21]		
				4 marks, 5 min.)	[12, 15]		
Comprehension ('-1' negative marking) Q.12 to Q.14			1 (3 marks, 3 min.)	[9, 9]		
1.	The density of KBr is 2.75 gm/cc length of the unit cell is 654 pm. K = 38, Br = 80, then what is true about the predicted nature of the solid. (A) Solid has F.C.C. structure with co-ordination number = 6 (B) Solid has simple cubic structure with co-ordination number = 4 (C) Solid has F.C.C. structure with co-ordination numbers-1 (D) None of these						
2.	CsBr has b.c.c. struc Br⁻ is: (A) 3.72	cture with edge length 4.	3 A. The shortest int (C) 7.44	er ionic distance in (D) 4.3	between Cs⁺ and		
3.	respectively	rest neighbours and nex (B) 6CI , 6Na ⁺	-		a Na⁺ ion in a crystal of NaCl are (D) 6Cl¯, 12Na⁺		
4.	A solid has a b.c.c. structure. If the distance of closest approach between the two atoms is 1.73 Å. The edge belli length of the cell is ;						
	(A) $\sqrt{2}$ pm	(B) $\sqrt{(3/2)}$ pm	(C) 200 pm	(D) 142.2 pr	n		
5.	The radius of metal atom can be expressed (A) it is a/2 for simple cubic lattice (C) it is $(a/2\sqrt{2})$ for F.C.C. lattice		If in terms of the length of a unit cell is : (B) it is (√3a/4) for b.c.c. lattice (D) All of the above.				
6.	Fraction of the total (A) π /6	volume occupied by ato (B) $\sqrt{3\pi}$ /8	oms in a simple cube (C) $\sqrt{2\pi}$ /6	e is (D) π/3			
7.	Lithium borohydride crystallizes in an orthorhombic system with 4 molecules per unit concell dimensions are a = 6.8 Å, b = 4.4 Å and c=7.2 Å. If the molar mass is 21.76, then the crystals is :						
	(A) 0.6708 g cm ⁻²	(B) 1.6708 g cm ⁻³	(C) 2.6708 g cm	-3 (D) None of	these.		
2	Show by drawing a c	liagram that in the NaCl	Lattice each CIO ion	n occupies an octab	andral void space		

- 8. Show by drawing a diagram that in the NaCl lattice each Cl^{Θ} ion occupies an octahedral void space provided by Na[®] ions. How many Cl^{Θ} ions surround each Cl^{Θ} ion in the lattice?
- **9.** A simple cubic lattice consists of eight identical spheres of radius R in contact, placed at the corners of a cube. What is the volume of the cubical box that will just enclose these eight spheres and what fraction of this volume is actually occupied by the spheres?

10. Copper has a face-centred cubic structure with a unit-cell edge length of 3.61Å. What is the size of the largest atom which could fit into the interstices of the copper lattice without distorting it?

(Hint.: Calculate the radius of the smallest circle in the figure)

BooSt YoUr PreViouS ConCept

Integer Answer Type

- 11. This section contains 2 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.
 - (i) Potassium dichromate in alkaline solution, with 30% H_2O_2 produces K_3CrO_8 . How many peroxide linkages are found in the structure of K_3CrO_8 ?
 - (ii) The sum of bond order and number of π -bond in \mathbf{C}_2 molecule on the basis of molecular orbital theory is :

Comprehension # (Q.12 to Q.14)

A hydrogen atom when bonded with highly electronegative atom such as fluorine, oxygen etc acquires a positive charge. In consequence of this, such a hydrogen atom exerts an electro static attraction on other highly electronegative atom like fluorine, nitrogen or oxygen. There is thus a dipole-dipole or dipole ion

attraction, which has been given name, hydrogen bond. This may be represented as, $\stackrel{\delta-}{X} - \stackrel{\delta+}{H} \stackrel{\delta-}{Y} - \stackrel{A}{A}$

Where X and Y are strongly electronegative atoms of fluorine, oxygen and nitrogen.

The hydrogen bond, a sort of polar link, is formed as the attraction between H and Y outweighs the repulsion between X and Y. But Y must be a small electronegative atom such as fluorine, oxygen or nitrogen.

Such a bonding is significant only with hydrogen because of the minute size of the almost bare proton which enables Y to make a close approach to the positive charge.

Maximum energy of H bond = 45 KJ/mol.

- **12.** Hydrogen bonding with chlorine is rarely observed because :
 - (A) Chlorine atom is not sufficiently electronegative to form hydrogen bond.
 - (B) The charge density of the chlorine atom is greater.
 - (C) The electron affinity of chlorine is highest among the halogen.
 - (D) The size of the chlorine is greater.
- 13. Which of the following statement is true regarding the existence of X H Y type bond -
 - (A) The given type of bond rarely occurs because a hydrogen atom can accommodate two electrons only in the 1s orbital. The use of 2s will involve much higher energy.
 - (B) The hydrogen atom has metal like properties. The valency of hydrogen is always limited to one. Thus X–H–Y type of bond never exists.
 - (C) X–H–Y type of bonding may occur in the electron deficient molecules. The formation of X–H–Y type of bond occur like the three centre two electron bond in the electron deficient molecules.
 - (D) Both (A) & (C) are correct.
- **14.** Acetic acid CH₃COOH, can form dimer (CH₃COOH)₂ in gaseous state

At 25°C equilibrium constant for dimerisation is 10^3 atm and for dimerisation ΔS° is, -0.16 KJ/mole/K The dimerisation reaction is $2CH_3COOH \rightleftharpoons (CH_3COOH)_2$

What is the H bond energy in dimer of acetic acid in gaseous state for per mole hydrogen bond.

- (A) 64.769 KJ
- (B) 32.385 KJ
- (C) 22.562 KJ
- (D) 50.79 KJ

Answer Kev

DPP No. #43

(A) **2.** (A)

(D)

4. (C)

5. (D)

(A)

8R3, 52.38%

0.53Å

11.

(i) 4 (ii) 4 12.

(D)

13.

(D)

14.

ts & So

PHYSICAL / INORGANIC CHEMISTRY

DPP No. # 43

1.
$$2.75 = \frac{Z \times 118}{(6.54 \times 10^{-8})^3 \times 6.023 \times 10^{23}}$$
 \Rightarrow $Z = 4$ (fcc with NaCl type structure)

2.
$$r_+ + r_- = \frac{\sqrt{3} a}{2} = \frac{\sqrt{3} \times 4.3}{2} = 3.72 \text{ Å}$$

4.
$$2r = \frac{\sqrt{3} a}{2} \implies a = \frac{2(2r)}{\sqrt{3}} = \frac{2 \times 1.73}{1.73} = 2Å = 200 \text{ pm}$$

6.
$$\frac{1 \times \frac{4}{3} \pi r^3}{a^3} = \frac{\frac{4}{3} \pi r^3}{(2r)^3} = \frac{\pi}{6}$$

7.
$$d = \frac{ZM}{a^3 N_A} = \frac{4 \times 21.76}{6.8 \times 10^{-8} \times 4.4 \times 10^{-8} \times 7.2 \times 10^{-8} \times 6.023 \times 10^{23}} = 0.6708 \text{ g cm}^{-2}$$

9.
$$\frac{1 \times \frac{4}{3} \pi r^3}{a^3} \times 100 = \frac{\frac{4}{3} \pi r^3}{8 R^3} \times 100 = 52.38\%$$

10.
$$r_{octahedral} = 0.414 R$$

for FCC 4R = $\sqrt{2}$ a

$$R = \frac{\sqrt{2} \text{ a}}{4} \qquad \Rightarrow \qquad r = \frac{0.414\sqrt{2} \text{ a}}{4} = \frac{0.414\sqrt{2} \times 3.61}{4} = 0.53 \text{ Å}$$

(ii) Bond order =
$$\frac{1}{2}$$
 [bonding electrons – antibonding electrons]

